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ABSTRACT 

This study describes an automated system that generates a statewide real-time quantitative 

precipitation estimation (QPE) product for flood forecasting in Iowa.  The QPE system is 

comprised of real-time data acquisition, processing, and product visualization subsystems.  

Combined with information retrieved from numerical weather prediction, the system 

processes data from multiple radars using various algorithms accounting for precipitation 

microphysics and radar remote sensing uncertainties.  The system generates a composite 

rainfall map covering the entire state of Iowa at a resolution of 0.5 km, updated every five 

minutes.  With the help of the system’s flexible modular configuration, we have recently 

added a new polarimetric algorithm based on specific attenuation.  Independent evaluations 

based on comparisons with rain gauge data and hydrologic model prediction of streamflow 

demonstrate that the new implementation significantly improves the rainfall estimation 

accuracy.  The new QPE product shows performance comparable to the Multi-Radar Multi-

Sensor product that contains a rain gauge correction. 

Keywords: QPE, Radar, Rainfall, Flood forecasting, Specific attenuation 
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1. Introduction 

Using data from the U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) 

network, the Iowa Flood Center (IFC) has provided a statewide real-time rainfall product 

since the IFC’s establishment in 2009.  This product generation was motivated by the need 

for real-time flood prediction in Iowa, which has repeatedly experienced devastating floods 

at various scales in recent decades (e.g., Smith et al., 2013; Vennapusa and White, 2015; 

Seo et al., 2018).  Our goal to forecast “everywhere” and cover all Iowa communities (e.g., 

regardless of catchment scale) has led to the use of a distributed hydrologic model, which 

requires spatially variable rainfall inputs (Krajewski et al., 2017). 

The IFC quantitative precipitation estimation (QPE) framework was initially built on 

the real-time Hydro-NEXRAD application (Krajewski et al., 2011; Kruger et al., 2011; Seo 

et al., 2011; Krajewski et al., 2013).  Most scientific algorithms in our QPE system have 

evolved according to the WSR-88D’s hardware and polarimetric upgrades (e.g., Istok et 

al. 2009).  The IFC QPE system acquires real-time data from seven WSR-88Ds (KARX in 

La Crosse, Wisconsin; KDMX in Des Moines, Iowa; KDVN in Davenport, Iowa; KEAX 

in Kansas City, Missouri; KFSD in Sioux Falls, South Dakota; KMPX in Minneapolis, 

Minnesota; and KOAX in Omaha, Nebraska), as shown in Fig. 1.  The system then 

generates a composite rain rate map covering the entire domain (Fig. 1), with temporal and 

spatial resolutions of five minutes and 0.5 km, respectively, using a variety of processing 

algorithms, as documented in Seo et al. (2011; 2015) and Seo and Krajewski (2015). 

As of early 2019, we had added a state-of-the-art polarimetric algorithm known as 

“specific attenuation” (e.g., Ryzhkov et al., 2014; Wang et al., 2019) to our QPE procedures 

to fully benefit from the WSR-88D’s dual-polarization (DP) capability.  This new 
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algorithm required several new elements; for example, one that retrieves temperature 

soundings from the numerical weather prediction (NWP) model analyses to identify the 

melting layer (ML) location.  Before this new implementation, the use of DP in the IFC 

system was limited to basic data quality control (e.g., removal of non-meteorological 

returns), and the system’s main estimator was a single polarization–based algorithm using 

a reflectivity-rain rate (Z-R) relation.  The new implementation using the specific 

attenuation method promises to be the most significant milestone in our system’s 10-year 

history, as the method has demonstrated meaningful improvements in QPE accuracy (Seo 

et al., 2020b). 

Therefore, we take this opportunity to document the architecture and capabilities of 

our fully automated QPE system, including algorithm updates and new developments as 

well as the way it complements the outdated descriptions presented in Seo et al. (2011).  

To validate the attainable improvement in QPE and subsequent hydrologic prediction, we 

generated the statewide QPE products using the latest and prior algorithms for a three-year 

period (2016–2018) and evaluate the performance of each one using rain and stream gauge 

observations.  We also compared the performance of our QPE products with that of U.S. 

national QPE products (e.g., Zhang et al., 2016; Cunha et al., 2013) that have been widely 

used for meteorological and hydrological applications. 

In Section 2, we describe the architecture of our QPE system by specifying the three 

main subsystems associated with real-time data acquisition, NWP analysis and radar data 

processing, and final product visualization.  Section 3 provides the algorithm details of 

module elements in the NWP, individual radar, and composite data processing.  Section 4 

evaluates the QPE products generated by our algorithms using rain gauge data and 
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hydrologic simulations.  In Section 5, we summarize the algorithm features and main 

findings from the product evaluation.  Finally, we discuss the improvements gained by 

implementing the new polarimetric algorithm and potential future developments. 

2. System architecture 

A real-time QPE system requires several modular elements, ranging from data 

acquisition to final product generation.  These modules include real-time radar and NWP 

data retrieval, algorithms for data quality control, volume scan data processing and 

precipitation estimation, and digital product and statewide map generation.  Our QPE 

system comprises three main subsystems: (1) the Local Data Manager (LDM; e.g., Fulker 

et al., 1997) system for real-time NWP analysis and radar data acquisition; (2) the data 

processing system that contains a variety of scientific algorithms associated with 

precipitation estimation as illustrated in Fig. 2; and (3) the product visualization system for 

weather monitoring. 

2.1 Local Data Manager 

The IFC LDM system acquires real-time streaming Level II radar volume data (e.g., 

Crum et al., 1993; Kelleher et al., 2007) and NWP model analyses using Internet Data 

Distribution (IDD) technology (Yoksas et al., 2006).  Level II data containing six radar 

observables (reflectivity, radial velocity, spectrum width, differential reflectivity, copular 

correlation coefficient, and differential phase) are split into multiple files (usually more 

than 100 for a single volume scan) and then distributed for faster data transfer.  Once our 

LDM has confirmed receipt of all the radar volume file pieces labelled with sequential 

integers, it combines them and performs a basic quality check (e.g., counting the number 
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of elevation angles) for file completeness.  More detailed descriptions of the Level II data 

reception, quality check, data packing, and format conversion are documented in Krajewski 

et al. (2013). 

We also obtain analysis results of temperature and geopotential height at various 

pressure levels (e.g., between 100 and 1,000 mb) and at ground level (e.g., 2 m above) from 

the Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) models (e.g., 

Weygandt et al., 2009; Benjamin et al., 2016).  RAP and HRRR are continental-scale, real-

time convection-allowing models updated hourly with 13 and 3 km resolution horizontal 

grids, respectively.  The HRRR model is fully dependent on its parent models, the radar-

assimilating RAP and the radar-enhanced Rapid Update Cycle (RUC).  The atmospheric 

variables we retrieve from the two NWP models are not model forecasts, but rather the 

model analysis used for model initializations.  We use the retrieved NWP variables to build 

the information required for precipitation classification (e.g., rain/snow) and ML 

identification, which can significantly affect the accuracy of radar-derived QPE.  Since the 

latency of this NWP analysis through LDM can be up to two hours (based on our several 

years of operational experience), we assume that the retrieved NWP variables (e.g., 

temperature and geopotential height) do not change substantially over this time. 

2.2 Data processing 

This subsystem includes processing algorithm modules for radar data quality control, 

precipitation estimation and correction, map coordinate transformation, and precipitation 

product generation.  As illustrated in Fig. 2, the system manager (i.e., Python scripts) 

sequentially executes the algorithm modules and organizes the input and output data of 

each sequential procedure.  We use the NASA Radar Software Library, an object-oriented 



7 

 

library written in C, to decode radar Level II data.  Our algorithm modules are also written 

in C for compatibility and efficient data processing.  The key feature of the data processing 

system is its modular algorithm structure, which makes it easier to upgrade, replace, and 

append algorithm elements.  The modular structure also provides users with flexible 

options to bypass (e.g., correction algorithms) and select (e.g., rain rate estimators) specific 

algorithms or their elements, depending on the user’s interests and purpose.  This flexibility 

allowed us to append a new polarimetric algorithm (Seo et al., 2020b) with some additional 

procedures (e.g., ML layer identification).  We evaluate our rainfall estimates generated 

using the new and former QPE algorithms in Section 4. 

Once radar volume data pass the file completeness check in the LDM system, the data 

processing system takes over and implements several algorithm procedures to generate 

QPE products.  The first step performed in individual radar data processing is data quality 

control (QC) to eliminate non-meteorological radar returns (e.g., anomalous propagation 

and ground clutter).  In this step, we also filter out noise presented in the radar observables 

(e.g., differential phase).  The QC and other individual radar data processing modules 

function based on spherical coordinates (e.g., 0.5° by 250 m) and are applied to all elevation 

angles.  After the QC, the system builds temperature soundings within each individual radar 

domain using the retrieved NWP information and identifies the ML altitude using three-

dimensional (3D) spherical coordinates.  The system then classifies and assigns 

precipitation types (e.g., convective and stratiform) on two-dimensional (2D) spherical 

grids using an approach documented in Seo et al. (2020a).  The rain rate estimation module 

then uses the ML and classification information to apply a suitable estimator to each grid 

and generates 2D rain rate maps for all elevation angles.  The hybrid scan module (e.g., 
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Fulton et al., 1999; Seo et al., 2011) combines these multiple elevation maps using a non-

parametric kernel function and feeds the final 2D (individual) product into the composite 

map processing step. 

This composite step requires temporal and spatial synchronization since all individual 

radar maps have different temporal (depending on the radar’s volume coverage patterns, 

or VCP) and spatial coverage.  After synchronization, the system generates a composite 

rain rate map every five minutes and corrects temporal sampling (e.g., radar scanning) 

errors using the two latest composite maps (Seo and Krajewski, 2015).  While the 

uncorrected instantaneous map is used for map visualization only, the corrected one is fed 

into a distributed hydrologic model, the Hillslope Link Model (HLM; e.g., Krajewski et 

al., 2017; Quintero et al., 2020a), for real-time streamflow forecasting.  The details of these 

algorithm modules are provided in Section 3. 

2.3 Product visualization 

As illustrated in Fig. 3, we visualize instantaneous rain rate and cumulative rain maps 

for the entire state of Iowa through the Iowa Flood Information System (IFIS, 

http://ifis.iowafloodcenter.org/ifis/main/).  The map interface supports visual selection and 

flexible navigation for the domain of radars or watersheds of interest using the Google 

Maps API (e.g., Demir and Krajewski, 2013).  This subsystem delivers a new rain rate map 

to IFIS and offers an animation of these maps for the last six hours.  This rain map contains 

a rain/snow classification, particularly useful in the winter season.  This classification uses 

environmental factors (e.g., atmospheric layer thickness and surface temperature) retrieved 

from the NWP analysis, and the spatial coverage of snow is overlaid with the rain map as 

shown in Fig. 3(a).  As illustrated in Fig, 3(c), the system also accumulates the rain maps 
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over time and visualizes daily and cumulative rain maps for up to the last 14 days based to 

the following steps: (1) today’s (cumulative) rain map is generated by accumulating the 

(temporal sampling) error-corrected rain map once the map is available (e.g., every five 

minutes) and is reset at midnight; (2) before resetting today’s rain map at midnight, it is 

saved as a daily rain map; and (3) the cumulative rain maps are generated by adding today’s 

map to the aggregation of daily maps over a specified period (e.g., up to 14 days).  For 

faster computation and visualization of cumulative rain maps, the system maintains multi-

day aggregation files by adding up daily rain maps and updating them at midnight. 

3. Algorithms 

In this section, we provide details on scientific algorithms implemented in the data 

processing subsystem described in Section 2.  The processing algorithms are categorized 

into three groups: (1) NWP analysis processing; (2) individual radar data processing; and 

(3) composite data processing.  Because the system structure and algorithm elements have 

continuously evolved over time since their initial deployment, we also discuss the changes 

and advancements of the algorithm components that aim to better represent atmospheric 

phenomena associated with precipitation microphysics. 

3.1 NWP processing 

3.1.1 ML identification 

The ML is one of the most significant uncertainty factors in radar QPE because most 

precipitation estimators (e.g., Marshall and Palmer, 1948; Fulton et al., 1998) are based on 

liquid (rain) drop size distributions (DSDs).  As such, estimation accuracy for solid and 

mixed precipitation within and above the ML tends to be relatively lower than that for 
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liquid precipitation below the ML.  To identify and correct radar observations affected by 

the ML, many approaches have examined the vertical structure of reflectivity (e.g., Fabry 

and Zawadzki, 1995) or enhanced DP capabilities (e.g., Baldini and Gorgucci, 2006; 

Giangrande et al., 2008). 

The ML identification module is a new procedure appended to our QPE system in 

accordance with the recent implementation of a polarimetric QPE algorithm known as 

specific attenuation (Seo et al., 2020b), which is valid only for liquid precipitation below 

the ML.  Upon the receipt of hourly RAP model analysis in LDM, the module retrieves 

temperature soundings on the RAP grids within our entire domain.  The module refers to a 

lookup table that assigns a (horizontal) RAP grid to a corresponding radar grid and builds 

temperature profiles on the spherical coordinates within a radar domain.  The module then 

identifies the ML altitude and flags radar grids below the ML by checking if the 

temperature at the top of a radar beam at a given location is greater than 5°C.  This 

procedure is applied to all elevation angle data and was tested in Seo et al. (2020a). 

3.1.2 Rain/Snow classification 

Although many winter precipitation classification algorithms have used radar data 

(e.g., Park et al., 2009; Thompson et al., 2014), we apply a rather simple scheme that does 

not depend on radar geometry.  Occasionally, the class designation obtained from radar-

only algorithms does not agree with the one observed on the ground.  This is because of 

the likely phase changes of precipitation along a falling path between a radar beam 

elevation and the ground.  In our system, we use a classification approach based on the 

critical thickness (e.g., Keeter and Cline, 1991; Heppner, 1992) and surface temperature 

together as retrieved from HRRR model analysis with a 3 km horizontal grid.  The critical 
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thickness is defined as the difference of geopotential height between 1,000 and 850 mb.  

Figure 4 shows the relation between the two variables (e.g., thickness and surface 

temperature) and precipitation classes observed during the winter seasons in 2012 and 

2013.  We obtained the observed classes in Fig. 4 from Automated Surface Observing 

System (ASOS) rain gauges (see Fig. 1), which are equipped with two sensors to detect 

precipitation classes (e.g., Ramsay, 1997).  Based on the preliminary analysis presented in 

Fig. 4, we selected two thresholds (i.e., 3°C for surface temperature and 1,310 m for the 

thickness) and applies them to delineate regions with high likelihood of snow.  These 

regions are then overlaid with the instantaneous rain rate map as shown in Fig. 3(a).  We 

note that this snow information is used for qualitative purposes only (e.g., map 

visualization for weather monitoring) and is not transferred to quantitative (i.e., hydrologic) 

applications.  Because Fig. 4 demonstrates some overlaps (e.g., possible errors) among 

rain, freezing rain, and snow in the regions near the two threshold values, in Section 5 we 

discuss this weakness and the probable improvement that could be achieved with a new 

approach. 

3.2 Individual radar data processing 

3.2.1 Data quality control (QC) 

The QC modules encompass elimination of non-meteorological radar returns and noise 

filtering of radar observations.  While it is comparatively easier to manage anomalous 

propagation, ground clutter, and biological returns using their polarimetric features (e.g., 

Ryzhkov and Zrnic, 1998; Rico-Ramirez and Cluckie, 2008), the effects from wind farms 

(WF) have become a growing challenge (e.g., Vogt et al., 2007).  To eliminate the effects 

from WF and other non-meteorological targets, we previously had used the multiple 
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thresholds of copular correlation coefficient (ρhv) conditioned on the reflectivity strength 

(Seo et al., 2015).  However, we found that an aggressive filter (e.g., ρhv ≥ 0.98) proposed 

to handle WF echoes occasionally removes some rain echoes.  As such, the current QC 

module bypasses the aggressive filter and applies a new method instead, which uses 

vertically integrated liquid water content (VIL) to identify WF echoes (Seo et al., 2020a).  

The basis of this new idea was the fact that estimated VILs for WF echoes tend to be much 

lower (e.g., a weaker vertical extension) than those for actual convective cells despite their 

strong reflectivity contamination. 

Unprocessed differential phase (φdp) data require unfolding and smoothing steps (e.g., 

Wang and Chandrasekar, 2009) because the data are rather noisy and are folded to a limited 

range (e.g., 0 to 360° for WSR-88D).  The noise-filtering module incorporates phase 

unfolding and smoothing routines used in the WSR-88D Common Operations and 

Development Environment (CODE) public package (https://www.weather.gov/code88d/).  

The smoothing routines for φdp processing consist of averaging and median filters.  The 

averaging filter is also applied to horizontal reflectivity (Z), differential reflectivity (Zdr), 

and ρhv along a radial direction.  The module also derives specific differential phase (Kdp) 

from processed φdp in accordance with the CODE procedure. 

3.2.2 Precipitation type and hydrometeor classification 

This module splits precipitation into convective and stratiform rain by estimating VIL 

to define convective cores and gradually expanding the convective area (from the cores to 

the adjacent grids), based on a region-growing method (e.g., Adams and Bischof, 1994).  

The VIL estimation using 3D reflectivity and the ML information mitigates the uncertainty 

associated with the effects of the bright band and radar beam geometry near the radar site 
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(Seo et al., 2020a).  The convective/stratiform classification was originally designed to 

apply separate rain rate estimators to different rain types, as well as to correct the error 

arising from the non-uniform vertical profile of reflectivity (VPR) for the stratiform regions 

(e.g., Bellon et al., 2005; Krajewski et al., 2011).  The correction module using a real-time 

VPR is currently inactive because the default rain rate estimator has been switched from 

the reflectivity-based method to the specific attenuation method.  The real-time VPR 

correction approach is documented in Seo et al. (2011).  We describe both estimators in 

the next subsection.  The module also performs hydrometeor classification for solid and 

mixed precipitation (e.g., ice and dry/wet snow).  This classification uses the polarimetric 

signatures of Z, Zdr, and ρhv, described in Straka et al. (2000) and Ryzhkov et al. (2005), 

combined with ML information.  Hail is simply identified when reflectivity is greater than 

53 dBZ. 

3.2.3 Rain rate estimation 

The module provides multiple rain rate (R) estimators, including the new development 

of specific attenuation (A): 

 

�(�) = 0.017 ∙ ��.�� (1) 

�(�) = �0.017 ∙ ��.��    for convective rain
0.036 ∙ ��.���     for stratiform rain (2) 

�(�, �#$) = 0.0067 ∙ ��.%�� ∙ �#$
&'.�' (3) 

�((#)) = 40.5 ∙ (#)
�.,� (4) 

�(-) = 4120 ∙ -.�' (5) 

where the unit scale of Z and Zdr is decibels (dB) in Eqs. (1), (2), and (3).  Although the 

default rain rate estimator for our QPE system is currently set to specific attenuation using 
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Eq. (5), such a selective option enables us to investigate the event-dependent performance 

of the various estimators (e.g., Thurai et al., 2017).  While all the estimators presented in 

Eqs. (1)-(5) are valid only for pure rain below the ML, the module selectively applies one 

of the estimators in Eq. (6) to solid and mixed precipitation within and above the ML (e.g., 

Istok et al. 2009):   

Wet snow: 0.6 �(�) 

Dry snow within the ML: �(�) 

Dry snow above the top of the ML: 2.8 �(�) 

Ice crystals: 2.8 �(�) 

Hail: �((#)) = 29.0 ∙ (#)
�.�� (6) 

In the case where the NWP analysis for the ML identification is missing, we simply apply 

Eq. (1) to the entire radar domain.  We note that estimation of specific attenuation A is 

quite complicated (e.g., Ryzhkov et al., 2014; Wang et al., 2019), and detailed procedures 

implemented in our QPE algorithm are provided in Seo et al. (2020b). 

3.2.4 Hybrid scan 

After generating rain rate maps at all elevation angles (e.g., 3D), the hybrid scan 

module constructs a 2D rain map by vertically combining the 3D rain maps using a linear 

weighting scheme.  A non-parametric kernel function (e.g., log-normal) assigns weights to 

the elevation data at a given azimuth and range location depending on the vertical distance 

between the center of the data grid and a predefined constant altitude (e.g., 1.5 km).  The 

total of weights assigned along a vertical column must be unity through the normalization 

of assigned weights, and the angle data closer to the constant altitude are given greater 

weight.  This smoothing technique tends to mitigate the discontinuity often observed 

between the transition areas of elevation angles (e.g., Seo et al. 2011).  The hybrid scan 
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approach tends to suppress significant ground clutter caused by the side lobe effect, which 

occasionally appears in the lowest elevation angle data (e.g., Fulton et al. 1998). 

3.2.5 Temporal synchronization 

Temporal synchronization of individual rain maps is vital for generating a composite 

rain product because the observation times and intervals among the radars shown in Fig. 1 

differ depending on their local weather conditions.  To synchronize all irregular data/map 

timestamps, we define a five-minute nominal timestamp and generate new rain maps at 

those timestamps using the latest two consecutive rain maps (see Fig. 2).  Our previous 

synchronization scheme interpolated the two consecutive maps by assigning weights 

determined by the time separation between the observed maps and the nominal time for 

which a new map is generated (e.g., Langston et al., 2007).  However, we found two 

weaknesses in this scheme: (1) The interpolation of the same rain system (e.g., a squall 

line) observed at different times yielded duplicate (or spatially expanded) systems even if 

the system moved from one place to another; and (2) the timestamp of the interpolated map 

was always earlier than that of the latest map observed, implying that the latency of a 

composite map was sometimes up to 15 minutes (because the observed map is labelled by 

the moment that a radar starts scanning, it already has a delay of 4 to 10 minutes).  To 

resolve these two issues with the interpolation scheme, the current module executes simple 

tracking of the storm velocity vector using a cross-correlation method (e.g., Fabry et al., 

1994; Seo and Krajewski, 2015).  This tracking requires grid transformation from radar 

spherical coordinates to geographic ones.  This geographic coordinate system, with a 

resolution of quarter decimal minutes (equivalent to approximately 0.5 km), also provides 

a common reference grid for the spatial mosaic of individual rain maps.  To accelerate the 
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tracking computation, the module generates rain maps that are four times coarser and 

captures the main movement (e.g., single vector), returns to the original grid, and finds the 

exact vector within an averaging range between the original and coarser scales.  The 

module then projects the estimated vector to the next two timestamps and produces new 

rain maps (see Fig. 2).  This extrapolation assumes that the estimated vector is valid within 

a projection time domain (e.g., up to 10 minutes). 

3.3 Composite data processing 

3.3.1 Spatial mosaic 

Once the (temporally) synchronized rain maps are ready, the QPE system manager 

takes over and feeds them into the spatial mosaic process every five minutes.  The mosaic 

module reads the geographic reference points (e.g., upper-left corner) from the map header 

of all individual rain map files and places the maps onto the common grid.  For overlapping 

areas covered by multiple radars, rainfall values are combined based on a linear weighting 

scheme using the distance and altitude between the sampling (observation) location and 

each involved radar site: 

 

>? = exp A− $C
D

EDF ∙ exp A− GC
D

HDF (7) 

where wi denotes an assigned weight for the i-th radar, and r and h are the distance and 

altitude (both are in km) between the radar sampling location and the radar sites.  R and H 

represent scale parameters, and a greater (smaller) value for these parameters leads to a 

gradual (rapid) change of the weight values.  We set 100 and 2 km as default values for the 

distance and altitude scale parameters, respectively.  The use of 100 km for the distance 

parameter smooths the sharp boundaries that occasionally appear in overlapping zones 
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because of relative calibration biases (e.g., Seo et al., 2013; Keem et al., 2019) between 

individual radars.  The calculated weights for a grid location in the overlapping zone are 

also normalized to sum up to 1. 

3.3.2 Advection correction 

It has been recognized that rainfall accumulations using rain rate maps produced from 

radar’s sporadic sampling often result in inaccurate representation (e.g., discontinuous 

patterns) of actual rain fields (e.g., Huebner et al., 1986; Liu and Krajewski, 1996).  This 

temporal sampling error is often significant, particularly as the storm velocity and the map 

spatial resolution become faster and higher, respectively.  To mitigate this error in the 

composite rain map, we apply an advection approach using the same vector tracking 

method as used in the time synchronization module.  The advection correction module 

linearly interpolates static storm locations detected at two consecutive maps and corrects 

for the missed rainfall accumulations.  The module takes two instantaneous composite rain 

maps with a five-minute interval, calculates and projects a velocity vector, and generates 

new intermediate rain maps with a one-minute interval within the five-minute domain (Seo 

and Krajewski, 2015).  The module splits the entire spatial domain shown in Fig. 1 into six 

tiles for faster computation and fulfills the aforementioned advection procedure.  An 

average of the six composite maps (e.g., two originals and four new ones) within the five-

minute domain is then delivered to the cumulative process for product visualization and to 

the hydrologic modeling component for streamflow prediction. 

4. Product evaluation 

We assess the QPE products generated via the combination of algorithms described in 
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Section 3 for the three-year period of 2016–2018 in two ways: (1) quantitative comparison 

with ground reference (i.e., rain gauge) observations; and (2) evaluation of hydrologic 

simulations driven by the QPE products using streamflow observations.  We generated the 

products using a QPE reproduction system (Seo et al., 2019) that can readily retrieve the 

radar Level II data from Amazon’s cloud archive (e.g., Ansari et al. 2017), with some 

substantial modifications to append newly-developed processing modules.  We acquired 

rain gauge data from the National Weather Service (NWS) Cooperative Observer Program 

(COOP; Mosbacher et al. 1989) network and streamflow data from the U.S. Geological 

Survey (USGS).  The domain illustrated in Fig. 1 shows about 220 rain gauge and 140 

streamflow stations.  The purpose of this evaluation is to demonstrate improvements 

achieved by our latest algorithms after the recent implementation of the specific attenuation 

method.  We also compare the performance of our QPE products with that of the national 

QPE products in the United States, Multi-Radar Multi-Sensor (MRMS; Zhang et al., 2016) 

and NWS Level III Digital Precipitation Rate (DPR).  We note that the evaluation analyses 

are limited to the months of April through October because the quantitative estimation of 

winter precipitation, both radar- and ground-based, is still challenging. 

4.1 Rain gauge evaluation 

In this section, we use the daily COOP data to evaluate four QPE products: MRMS, 

NWSDP, IFC-R(Z), and IFCDP-R(A).  “DP” denotes polarimetric estimates.  Our LDM 

has been receiving a set of MRMS QPE products (e.g., radar-only, gauge-corrected, and 

gauge-only) in real-time; we use the hourly gauge-corrected one in this evaluation.  The 

other three products are radar-only estimates.  Concerning NWSDP, we obtained the DPR 

product for seven WSR-88D radars within the domain shown in Fig. 1 and applied our time 



19 

 

synchronization and spatial mosaic procedures to generate a composite product.  As we did 

not apply our QC and correction modules in NWSDP processing, the primary features of 

the NWS polarimetric algorithm should be preserved in NWSDP.  IFC-R(Z) provides 

reflectivity-based estimates generated by our former algorithm combination, which does 

not contain algorithm modules such as noise filtering and ML identification.  As such, we 

estimated IFC-R(Z) using only Eq. (1) for the entire radar domain.  The estimation 

procedure of IFCDP-R(A) is primarily based on the specific attenuation method (Seo et al., 

2020b) with the combination of the latest algorithm elements as presented in Section 3. 

Figure 5 illustrates the product maps of rain totals accumulated over the month of 

September 2016.  In Fig. 5, we discover that IFC-R(Z) shows an underestimation tendency, 

while the spatial rainfall structures of the other three products look quite similar.  It seems 

that IFCDP-R(A) effectively manages the partial beam blockage effects, which appear 

clearly in the southeast direction from the KFSD radar in MRMS, NWSDP, and IFC-R(Z).  

This is because the specific attenuation method is known to be less sensitive to radar 

miscalibration, partial beam blockage, and the variability of DSDs (e.g., Ryzhkov et al., 

2014; Wang et al., 2019).  We observed many isolated spikes in NWSDP, which 

correspond to WF in Iowa and Minnesota (for exact WF locations, see Seo et al., 2020a).  

These spikes indicate that the NWS algorithm has a QC issue, and several spikes near the 

border between Iowa and Minnesota are also detected in MRMS.  In Figs. 6 and 7, we 

present the quantitative evaluation results for the four products using the independent 

COOP gauge data at daily and yearly (April to October) scales with three statistical metrics: 

multiplicative bias (B) defined as a radar–gauge ratio (R/G); Pearson correlation coefficient 

(r); and mean absolute error (MAE).  The term “independent” indicates that the data from 
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the Hydrometeorological Automated Data System (e.g., Kim et al., 2009) included in the 

MRMS gauge correction procedure were not involved in this evaluation.  As shown in Fig. 

6, the dots representing MRMS, NWSDP, and IFCDP-R(A) tend to align along the one-to-

one line with somewhat different degrees of scatter.  IFC-R(Z) shows the largest scatter, as 

well as inconsistent bias changes from year to year.  IFCDP-R(A), a radar-only product, 

shows performance (e.g., accuracy) quite comparable to MRMS, which contains a bias 

correction based on rain gauge observations.  NWSDP also provides good estimates, except 

for an underestimation observed in 2018 and somewhat larger dispersion when compared 

to MRMS and IFCDP-R(A).  The daily evaluation results, represented as 2D histograms, 

are provided in Fig. 7.  The observed degrees of overall bias and dispersion for each QPE 

product shown in Fig. 6 are consistent with those displayed in Fig. 7.  Figure 7 also reveals 

that the four products are characterized by different uncertainty features conditioned on 

rainfall magnitude. 

4.2 Hydrologic evaluation 

The hillslope link model (HLM) is a fully distributed hydrologic model that currently 

provides real-time streamflow predictions for the entire Iowa domain (Krajewski et al. 

2017; Quintero et al. 2020a,b).  The HLM is based on landscape decomposition into 

hillslopes and channel links, which enables the physical representation of runoff generation 

and water transport.  The HLM is calibration-free: its parameters are determined a priori; 

therefore, the model does not “favor” any specific forcing inputs.  Further details regarding 

the HLM equations, configuration, and numerical solver are documented in earlier studies 

(e.g., Small et al., 2013; Quintero et al., 2016; Krajewski et al., 2017; Quintero et al., 

2020a). 
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We ran HLM using the hourly MRMS, IFC-R(Z), and IFCDP-R(A) products as model 

forcing inputs and generated streamflow simulations at a 15-minute time interval.  We 

excluded NWSDP from the model forcing stream because of its erroneous features (e.g., 

strong spikes and unknown radial patterns shown in Fig. 5).  The HLM simulations driven 

by different forcing products for each year started with the same initial condition (e.g., 

model state on April 1) captured from the MRMS–HLM run for an antecedent period.  We 

did not calibrate model parameters because model calibration may obscure forcing-

dependent differences in streamflow generation.   

For a hydrologic evaluation of the different QPE forcing products, we use the 

performance metrics of Kling-Gupta efficiency (KGE; Gupta et al., 2009), Pearson 

correlation coefficient (r), MAE, and root mean square error (RMSE).  KGE describes the 

predictive power of hydrologic models and addresses deficiencies in Nash-Sutcliffe 

efficiency (NSE; Nash and Sutcliff 1970).  Figure 8 shows a direct comparison of the 

effects on performance (represented by KGE) derived from different forcing products.  In 

Fig. 8, hydrologic simulation results driven by IFCDP-R(A) are compared with those driven 

by IFC-R(Z) and MRMS at about 140 USGS stations in Iowa.  For the years 2016 and 

2017, IFCDP-R(A) outperforms IFC-R(Z), and the performance of IFCDP-R(A) looks 

comparable with that of the reference QPE product (MRMS), similar to Fig. 6.  Although 

MRMS seems slightly better than IFCDP-R(A) for 2018, KGE differences between the two 

products are likely not significant at a KGE range of about 0.3–0.7 (e.g., a cluster of dots 

slightly above the one-to-one line at the KGE range).  To further examine the performance 

of MRMS and IFCDP-R(A), we compare the results from both forcing products regarding 

catchment scale (e.g., upstream basin areas of the USGS stations) in Fig. 9.  On average, 
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the performance based on all four metrics tends to be better for both forcing products as 

the catchment scale becomes larger.  Performance varies from year to year, and no QPE 

product (MRMS or IFCDP-R(A)) is consistently better. 

5. Summary and discussion 

In this paper, we document the architecture, algorithm configuration, and estimation 

performance of our real-time QPE system used primarily for flood prediction in Iowa.  The 

IFC system is the only academia-based large-scale (statewide) real-time radar-rainfall 

monitoring system in the United States.  The system retrieves data from operational radars 

and NWP models and uses a variety of scientific algorithms to account for precipitation 

microphysics and uncertainties in radar remote sensing (e.g., Villarini and Krajewski, 

2010).  NWP analysis (e.g., temperature and geopotential height) acquired through LDM 

facilitates the ML identification and rain/snow classification.  Real-time streaming data 

transferred from individual radars undergo several sequential processing procedures before 

they are combined into a composite product that covers the entire Iowa domain (Fig. 1).  

This sequential processing includes the radar data QC (removal of non-meteorological 

echoes and noise filtering), precipitation type and hydrometeor classification, rain rate 

estimation, hybrid scan construction, and time synchronization of individual rain maps.  

The composite processing modules then spatially combine the synchronized rain maps and 

correct for the error arising from the radar’s periodic temporal sampling.  Finally, the 

(composite) instantaneous and accumulated rain maps are visualized through IFIS (e.g., 

Krajewski et al., 2017), a flood information portal open to the general public.  These 

statewide rain maps are updated every five minutes, implying that all individual and 

composite data processing procedures are done within a five-minute window. 
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The key feature of our QPE system is its flexible system structure (e.g., modular 

configuration), which allows us to improve its utility and performance by upgrading and 

appending algorithm elements.  One notable example is the recent implementation of new 

polarimetric algorithms while maintaining the main system structure and existing 

algorithm modules.  The new polarimetric algorithms include the precipitation estimators 

presented in Eqs. (3)-(5) and several subject elements, such as noise filtering and ML 

identification procedures.  The specific attenuation method is a default estimator in our 

current operation and has improved the estimation accuracy significantly, compared to the 

former one based on a conventional Z-R relation (Seo et al., 2020b).  We have demonstrated 

that our composite specific attenuation estimates are more reliable and robust with regard 

to the variability of DSDs and partial beam blockage, and their performance (e.g., accuracy) 

is comparable with MRMS, which relies on a gauge correction (Fig. 6).  We have also 

verified that QPE improvements achieved through this new implementation lead to better 

simulation of streamflow (Fig. 8). 

The next module element we plan to update (or replace) is the rain/snow classification 

because the current threshold scheme has revealed many cases of misclassification (see 

e.g., Fig. 4).  Data-driven approaches (e.g., machine learning) will likely be useful to 

inspect the multi-dimensional features of many more variables (e.g., thickness, temperature, 

web-bulb temperature, relative humidity, and radar observations) relevant to winter 

precipitation processes.  Bringing radar observations into this classification framework will 

also enable a rapid map update; the rain/snow boundary in the current one stays static for 

an hour based on the NWP’s update cycle. 

While we have demonstrated our algorithm’s application to a limited spatial domain 
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(i.e., Iowa), the framework described in this paper is transferrable to other geographic areas 

and expandable to a larger (e.g., regional) scale.  The new estimator (e.g., specific 

attenuation) in our QPE system should be more robust through this transition because its 

estimates are less sensitive to the variability of DSDs (e.g., Ryzhkov et al., 2014), which 

could vary considerably in different geographic regions.  The required resources for the 

domain change include radar information (e.g., ID, geographic location, and spatial 

coverage) and lookup tables for grid matching between the individual radar and NWP 

domains.  Our experience with the successful application of prior developments (e.g., 

Krajewski et al., 2013) to different regions of the United States (e.g., Lin et al., 2010; Yang 

et al., 2014) confirms the system’s flexibility with regard to domain change and expansion.  

We are planning to expand the system to a much larger domain including neighboring 

states (e.g., Kansas, Missouri, and Nebraska) for the purpose of flood mitigation in the 

Mississippi and the Missouri river basins.  We hope to report the results and discuss the 

challenging aspects of the domain expansion soon. 
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List of Figures 

Fig. 1. The QPE system spatial coverage with (a) the involved radar locations and (b) the 

reference rain (COOP and ASOS) and stream (USGS) gauge locations for its product 

evaluation.  The KEAX radar in Kansas City, Missouri is not shown in (a).  The black solid 

line and gray box represent the Iowa border and IFC domain extent for the QPE product 

generation, respectively.  The circular dashed line and colored areas centered on individual 

radars indicate their 230 km coverage.  The blue solid lines in (b) denote major rivers and 

streams in the domain. 

 

Fig. 2. Overall system architecture illustrating the NWP analysis and radar data flow and 

sequential processing procedures. 

 

Fig. 3. Examples of real-time rainfall product maps visualized in IFIS: (a) an instantaneous 

rain rate map with snow (gray) area identification; and (b) a cumulative rain map.  The 

temporal range of daily (DR) and cumulative (CR) rain maps is defined in (c). 

 

Fig. 4. Precipitation classes characterized by the surface temperature and critical thickness 

(1000-850 mb) retrieved from the NWP model (e.g., HRRR).  The precipitation classes 

(rain, freezing rain, and snow) were observed at the ground using the ASOS stations in 

Iowa.  The red lines indicate the thresholds used in our rain/snow classification. 

 

Fig. 5. Maps of one-month rain totals (September 2016) for the MRMS, NWSDP, IFC-

R(Z), and IFC-R(A) products. 

 

Fig. 6. Quantitative evaluation of the MRMS, NWSDP, IFC-R(Z), and IFC-R(A) products 

using rain gauge (COOP) data at annual (April to October) total scale.  Three performance 

metrics (bias, correlation, and MAE) are provided in each scatter plot.  The MAE values 

were normalized by the gauge mean and presented as percentages. 
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Fig. 7. The same evaluation as Fig. 6 (using the same QPE products and rain gauge data) 

but at the daily scale.  Results are represented as 2D histograms.  A specific color designates 

the number of occurrences for given gauge and radar rainfall values. 

 

Fig. 8. Comparisons of hydrologic performance driven by IFCDP-R(A) with that driven by 

IFC-R(Z) and MRMS.  The dots in each plot indicate the KGE values at about 140 USGS 

stations in Iowa. 

 

Fig. 9.  Four performance metrics (correlation, MAE, RMSE, and KGE) obtained from 

hydrologic simulations driven by MRMS and IFCDP-R(A) regarding catchment scale.  

RMSE values were normalized by the mean annual streamflow discharge at each USGS 

station. 
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Fig. 1. The QPE system spatial coverage with (a) the involved radar locations and (b) the 

reference rain (COOP and ASOS) and stream (USGS) gauge locations for its product 

evaluation.  The KEAX radar in Kansas City, Missouri is not shown in (a).  The black solid 

line and gray box represent the Iowa border and IFC domain extent for the QPE product 

generation, respectively.  The circular dashed line and colored areas centered on individual 

radars indicate their 230 km coverage.  The blue solid lines in (b) denote major rivers and 

streams in the domain. 
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Fig. 2. Overall system architecture illustrating the NWP analysis and radar data flow and 

sequential processing procedures. 
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Fig. 3. Examples of real-time rainfall product maps visualized in IFIS: (a) an instantaneous 

rain rate map with snow (gray) area identification; and (b) a cumulative rain map.  The 

temporal range of daily (DR) and cumulative (CR) rain maps is defined in (c). 
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Fig. 4. Precipitation classes characterized by the surface temperature and critical thickness 

(1000-850 mb) retrieved from the NWP model (e.g., HRRR).  The precipitation classes 

(rain, freezing rain, and snow) were observed at the ground using the ASOS stations in 

Iowa.  The red lines indicate the thresholds used in our rain/snow classification. 
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Fig. 5. Maps of one-month rain totals (September 2016) for the MRMS, NWSDP, IFC-

R(Z), and IFC-R(A) products. 
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Fig. 6. Quantitative evaluation of the MRMS, NWSDP, IFC-R(Z), and IFC-R(A) products 

using rain gauge (COOP) data at annual (April to October) total scale.  Three performance 

metrics (bias, correlation, and MAE) are provided in each scatter plot.  The MAE values 

were normalized by the gauge mean and presented as percentages. 
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Fig. 7. The same evaluation as Fig. 6 (using the same QPE products and rain gauge data) 

but at the daily scale.  Results are represented as 2D histograms.  A specific color designates 

the number of occurrences for given gauge and radar rainfall values. 
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Fig. 8. Comparisons of hydrologic performance driven by IFCDP-R(A) with that driven by 

IFC-R(Z) and MRMS.  The dots in each plot indicate the KGE values at about 140 USGS 

stations in Iowa. 
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Fig. 9.  Four performance metrics (correlation, MAE, RMSE, and KGE) obtained from 

hydrologic simulations driven by MRMS and IFCDP-R(A) regarding catchment scale.  

RMSE values were normalized by the mean annual streamflow discharge at each USGS 

station. 

 

 




